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ABSTRACT

An algorithm based on simple heuristics is presented for

an important class of all-binary integer linear programs

known as the set covering problem. In spite of its very

special form, the set covering problem has many practical

applications. Optimal solutions to problems derived from

these applications are difficult to obtain using known

methods. Various solution techniyues are investigated based

on heuristic algorithms that obtain upper and lower bounds

on the optimal solution value together with branch and bound

enumeration. These solution technilues are effective on

some problems. Computational results are reported for

several large-scale real-world problems and several

artificial problems.
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I. INTROD3CTION

A. INTECDUCTION

Set Covering Problems (SCPs) comprise an important class

of all-binary (0-1) Integer Linear Programs (ILPs). The SCP

model is well-known and has many practical dpplicatior.s in

diverse areas such as vehicle routing, facility location and

capital budgeting. The set covering problem is a theoreti-

cally difficult problem in that it is NP-complete [Ref. 1].

However, there exist several methods for obtaining solutions

to SCPs for quite large real-world problems. In this study,

heuristics together with branch and bound enumeraticn are

tested as a solution method for solving several large-scale

SCPs.

There are several reasons for using heuristics with

branch and bound instead of using cutting plane methods,

LP-based branch and bcund, or scme other technique. First,

not all researchers have access to good large-scale LP

systems on which to base cutting plane or branch arJ bound

algorithms. Any ccmpetent researcher should be atle to

program a heuristic-based method with a modest amcunt of

effort. The second reason for wanting heuristic-based

methods is that more complicated techniques are subject to

failure as a result of degeneracy, numerical instability and

slowness. For instance, the systems based on solving the LP

relaxation, both cutting plane and branch and bound, fail

when the LPs are difficult to solve because of their size,

or because of basis structures which are hard to invert, or

Lecause the LP gives weak bounds. See [Ref. 2] and (Ref. 3].

9

......................... ..... .. .

. . . .. . . . . . . . . . . . . . . . . . . .



B. THE SET COVERING PROBLEM

The SCP is an integer program of the form:

n
(1) MIN c c x.

J 3 .

n

(2) S.T. , a. x. b i 1,...,m.13 3 i.
j=i

(3) x binary j =1,...,n

J1where each a.=0 or 1

b > 0 and integer
J

C _ 0. .j

A minimal cost set of columns must be selected from the

coefficient matrix A such that the right-hand side h is

covered or satisfied. Typically, right-hand-side values are

all 1s. Closely related to the SCP is the set partitioning

problem( SPP ) where (2) is replaced by (4).

n

(4) a x = b., i = 1...,M.

j=1

The SPr is the same as the SCP except that each row i must

be covered exactly b times instead of at least b times.
i i

C. USES OF SCP AND SEP

Set covering problems and set partitioning problems have

been studied widely because of their many practical applica-

tions and simple binary structure. Bausch [Ref. 2] anl

Edalas and Padberg [Ref. 4] give a large collection of

references to applications which are given below for

completeness along with some more recent references. Only

references 6,7,9,16 and 25 are unsighted.

10
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1. Airline Crew Scheduling [Ref. 5],[Ref. 6 ],,Fef. 7

2. Airline Fleet Scheduling [R~ef. 11j

3. Truck Deliveries [Ref. 12],[EeE. 13]

[Fef. 14 ,Ref . 15]

:Pef. 16]
4. Pclitical Districting (R~ef. 17],[Pef. 18]

5. Infcrmation Retrieval [Ref. 19]

6. Symlolic Logic [ref. 20]

7. Switching Theory [Ref. 211,[Ref. 22]

[Fef. 23],[Ref. 24]

8. Stock Cutting [Ref. 25]

9. line Balancing [Ref. 26]
10. Capacity Balancing [Ref. 27]

11. EF1Vi-C~m [Fef. 20]

12. List Selection [Fef. 28]

13. Tanker Routing [Ref. 29]

14. Frequency Allocation [Ref . 30]

15. Tracking Problems [Ref. 31]

16. Vehicle Routing [RLef. 32]

17. Sales Territory resign LRef. 3 3]
18. Coicring Problem [rRef . 34]

19. Cyclic Scheduling Problem 'Ref. 35) Ref . 36)

20. Disconnecting ?aths [Ref. 37h[Ref . 38]
in a Graph

21. Capital Investment r Ref . 39]

22. location of offshore [Ref. 40]
Drilling Platforms

23. Facilities Location [Ref. 41]

A truck routing protlem will be described here for the

purpcse of illustrating both the SCP and the SPP. ThE SCP

example is described first. The head~uarters of the First

Corps of the Republic of Korea Army has 3 divisiors to
supply using 7 possitle delivery routes. It is assumed that



the cost of each route is measured in dollars here, tut

costs could also be measured in time, mi le s travellEi,

trucks used, etc. The incidence matrix A which is shown in

Table 1 consists of is and Os such that

(1 if route j goes through iivision i
a

(o 1 otherwise.

F TABLE 1

Truck Routing ExampleI

Pcint Ri R2 R3 R4 R5 R6 R7

#1 1 0 1 1 0 0 0

#2 1 0 0 1 0 0 0

#3 1 1 0 1 0 0 0

*-#4 1 1 0 0 0 1 0

#5 0 0 1 0 1 1 0
16 0 1 1 0 1 0 0

#7 0 0 1 1 1 0 0

#E 0* 0 1 1 0 0 1

Costs 7 8 10 12 6 51

A set of truck routes of minimal cost is to be determinel in

such a way that at least one truck roate should an t.-ro ugh

each supFly point.7

This Froblem is an SCE

where A =(a**

T
* b~ 1 ( 1 1 11) aind

(7 8 10 12 65 5)

Variable x has the value 1 if truck route jis in the

12
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minimum cost set of routes and it has value 0 otherwise.

The optimal solution is

x = ( 1, 0, 1, 0, 0, 0, 0 ) ,

with objective value 17. The solution of the above problem

using branch and bound will be demonstrated in Chapter 2.

Suppose, on the cther hand, that trucks are picking up

supplies and that the net cost of route j is given by

c = cost of route j - value of supplies at all points inJ
route j. With this cost structure, no overcovering of any

row may be allowed and this problem becomes an SFP. The

optimal solution for the SPP is
T

x = ( 1, 0, 0, 0, 1, 0, 1 ) T

with objective value 18. Since this SPP is a restricticn cf

the previous SCP, it is to be expected that the optimal

soluticn to the SPP will be no better than the optimal solu-

tion to the SCP.

D. SOLUTION METHODS FOR THE SCP

1. Cuttinq Planes

One method of solving a general ILP is by attempting

to define the optimal integer solution of the ILP as an

extreme point of a convex polyhedron generated by the orig-

inal linear constraints plus some additional constraints

called "cuts." The technique is applied to the SCP by first

solving the linear relaxation:

MIN cx
(5) S.T. Ax ? b

x ! 0.
Solve this relaxation. If the solution is integer, then the

solution must be optimal. Otherwise, derive a valid cut,

13



i.e., a linear constraint which is satisfied by all integer

solutions to SCP, but which is violated by the current non-

ir.teger solution. Add this contraint to the prcLlem and

solve the new restricted problem. Continue solving the

restricted linear programs and adding cuts until either an

integer solution is ottained or numerical difficulties force

a halt tc the process.

2. Eranch and Bound

Branch and bcund is an optimization techniCue that

uses a tree search enumeratioL approach to the solution of a

general ILP:

MIN cx

(6) S.T. Ax >

x 0

x integer.

Following Garfinkel [Ref. 41), denote the set of feasible

solutions to (6) by

S= {xl Ax ? b, x 2! 0, x integer}

Instead of attempting to solve directly over S, the set is

successively divided into smaller sets which have the prop-

erty that any optimal solution must oe in at least cne of

the sets. This is called separation and is often illus-

trated by an enumeration tree with its root node at the top

of the tree and with restrictel subproblems Lelow the root

(See Figure 2. 1). Each node of the enumeration tree

corresponds to a subproblem of (6). That is, node k is the

problem

(7) MIN cx , x is in S
-- - k

where S is a subset of S.
k

In a binary ILP, S is S with additional constraints which
k

. . . . .° . - ... ... . . . . -. .a t . 2 . • . -. .L.".. . . .



fix certain variables to 0 or 1. As the enumeration

proceeds further down the enumeration tree, the subsets

become progressively smaller until it finally becomes

possible to solve (7) exactly or at least to determine

whether cr not it contains a potentially optimal solution.

Subproblems are discarded or "fathomed" when (7) is solved

or when it is determined that a subset cannot contain a

solution better than the best known solution to (6) . Upper

and lower bounds on the optimal solution are calculated for

each sulproblem allowing for more efficient fathcming of

nodes. The success or failure of branch and bound is

largely dependent on the accuracy of these bounds.

Branch and bcund algorithms are often primal in the

sense that they proceed from one feasible solution to

another until optimality is verified. In fact they may find

optimal or near optimal solutions at an early stag e in the

enumeration process and spend the majority of the time veri-

Zying optimality by improving bounds.

E. IMPLEMENTATION

1. Introduction

M.ost large-scale mathematical programming problems

have special structure which is exploited in the implementa-

tion of mathematical programming solvers. Examples of such

special structure are sparsity of the constraint matrix an"

the frequent occurrence of some coefficient values. To take

advantage of this structure, the computer programs written

for this study are written as subroatines embedded in a

large-scale optimization test bed called the X System or

simply XS [Ref. 42]. XS is designed to solve linear

programming problems, 0-1 programming problems, r.onlinear

programming problems and mixed 0- 1/line ar/nonlinear

" programming problems. XS uses sparse matrix techniques

15
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common to many mathematical programming systems. A mcre

specialized system using binary vectors to represent the A

matrix [Ref. 43] might be faster for some problems but less

flexible. e

2. Input Data Format

In this study, to make data manipulation easy and

convenient, the data format described by Bausch [Ref. 2] is

used since this format has many alvantages for large-scale

problems. The advantages are as follows.

a. It is compact.

b. Storage requirements are easily calculated.

c. Data generaticn problems are simplified.

d. Cclumn manipulation of data input is made easy

since all information for each column is contiguous.

e. This column format is easily generated by ccmmEr-

cially available (MPS) problem jeneration systems.

The data input fcrmat consists of three sets of card images:

a. Protlem dimensions. Format (316) (One Card)

= Number of rows

N = Number of columns

NZEL = Number of non-zero elements.

L. Constraint ranges. Format (2A4, 2E16.8) (A Cards) -

IR= Row index i

EL - Lower range limit b
i

RU = Upper range limit (always Cyl).

c. Column Data. (N or Mrre Cards) (2A4, F14.3, 1015)

JC = Column index j
C = Column cost coefficient c

NCE = Number of non-zero elements in the column

IR row addresses of non-zero coefficients.

If NCE is gredter than 9, additional column cards

are needed to hold the row addresses for that

16
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column. The format for additional column cards is

(20X, 1015).

An examile of this data format is shown in Appendix A for

the truck routing exaiple of Table 1.

3. Test Problems

Eight test problems are evaluated in this thesis.

These problems consist of four real-world problems

(American, Bus, Tiger and Truck), and four artificial prob-

lems (Steinerl, Steiner2, Steinrla and Steinr2a). Steinerl

and Steiner2 are problems devised in [Ref. 49] and are guar-

anteed to require extensive enumeration when using LP-based

branch and bound since the LP bounds are so weak. Steinrla

and Steinr2a are Steinerl and Steiner2 transposed, respec-

tively.

Some of the problems are, in fact, pure SPPs.

However, we have converted these problems into SCPs

reasoning that the derived SCP should still be representa-

tive of a true SCP. The characteristics of these problems

are shown in Table 2 where NZEL is the total number of

nonzeros in the constraint matrix and NCE is the average

number cf nonzeros in each column. All these problems
except Truck are typical set covering problems which have

right-hand sides equal to 1. The Truck problem has a
general right-hand side. All of these test problems were

run on an IBM3033 under VM/CMS. Computation times reported

in the following chapters are accurate to the number of

decimal places shown.

17



Problem Dimensions

nroblem POWs Columns NZEL NCE lIodel

Ame-rican 95 9318 57293 6.0 SPP

B us 56 530 3339 6.3 SPP

Steineri 117 27 352 13.0 SCP

SteinerlA 27 117 351 13.0 SCP

Steiner2 330 45 991 22.0 SC?

Steiner2A 45 330 991 22.0 SCP

Tiger 160 636 4134 6.7 SPP

Truck 239 4752 30075 8.0 SCP

18



II. BBANCH AND BOUND ENUMERATION

A. INTRCDUCTION

in this chapter we introduce "branch and bound" enuiera-

tion which will be used in chapter 5 to solve SCPs. Branch

and bound is an optimization techniiue that uses tree

enumeration together with upper bounds and lower bcunds on

the objective function. These bounds help to accelerate the
fathoming process and reduce enumeration. In this chapter,

we describe branch and bound in terms of a minimizing binary

IIP, and discuss the importance of good bounds and good

tranching strategies. In a binary ILP, a separation is

effected by fixing a binary variable to its possible values,

0 and 1. Thus, every separation of a problem is, in fact, a

partition of the problem into two subproblems.

The discussion of branch and bound is limited to a
"depth-first" search or exploration of the enumeration tree

since this is the method that was used in this research.

More general techniques are possible ( See Garfinkel ani

Nemhauser [Ref. 43]. ) but these all require substantially

more storage and general overhead. lost commercial branch

and bound packages utilize a depth-first search.

Depth-first search simply means that when a separation is

defined, one of the nodes created by the separation is imme-

diately selected to be the next subproblem, and when d node

is fathomed, the enumeration always backtracks to the most

recentl' created live node which is the "twin*' of a node

already explored.

There are two imrortant parts of any branch and bound

algorithm. First, good upper and lower bounds must be

obtained on the optimal solution. The closer the bounds are

1I

19 - ,
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to the optimal solution, the fewer nodes (subproblems) must

be enumerated. There exist several ways of obtaining upper

and lower bounds on an SCP. lethods for obtaining comFuta-

tionally simple lower bounds will be described in Chapter 4.

Upper bounds on the optimal solution are given by heuristi-

cally obtained feasible solutions to the ILP. Feuristic --

solution methods for the SCP will be described in detail in

the next chapter.

The second important part of the branch and tound algo-

rithm is the method of determining which variable to fix

first when a separaticn is defined at a .jode in the tree and

whether that variable should be fixed to 0 or 1. This

selection process is called a "branching strategy."

Branching strategies are dependent on the methods being used

for obtaining upper and lower bounds and the actual strat-

egies to be used will be discussed in chapte-r 5. It seems

obvious that if a good guess can be made as to which vari-

ables must be in the optimal solution, then fixing one of

those variables first to 1 would be a good tranching

strategy. Of course, guessing is very difficult; otherwise

we woull have guessed the solution to the whole problem.

Another likely strategy may be to select the least attrac-

tive variable in the incumbent and set that variable to 0.

Unfortunately, as will be seen in chapter 5, no single rule

seems to work well on all problems and a certain amount of

case-by-case experimentation is necessary.

B. FATHOMING CRITERIC.

To accelerate the enumeration process and save computing

time we need a criterion to decide whether or nct a

subproblem should be discarded at a certain point of the

algorithr. Suppose that several steps of the enumeration

have already been performed and that a subproblem at a

20
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particuldr node in the tree is being considered. Let BEST

denote the smallest feasible objective value found thus far

in the enumeration. Clearly, BEST is an upper bound on the

optimal solution to the IlIP. The feasible solution

corresponding to BEST is called the "incumbent."

Now, let CLBND denote a lower bound on the optimal solu-

tion to the ILP given the restrictions at the current node.

CLBND is defined to be infinity if no feasible solticn to

the ILP can be found given the current restrictions. let

CUBND denote a upper bound on the optimal objective value

corresponding to a feasible solution to the ILP giver the

current restrictions. If BEST > CUBND, let BEST = CUBND and

let the corresponding solution be the new ircumbent. Now,

the efficiency of branch and bound enumeration is based on

the fact that explicit enumeration need not be extended

below the current node if the "fathoming criterion" is met:

Fathoming critericn: CLBND _> BEST.

For prcblems with integer costs, fractional values for CLBND

should be rounded up to the nearest integer.

From a computaticnal viewpoint, it is useful to split

the above test into two tests, however. First, compute
CLBND and test if CLBND 2: BEST; if it is, the node is

fathomed. If not, only then compute CUBND, update BEST if

appropriate and repeat the test. This avoids some

unnecessary computaticn of upper bounds.

C. SEPARATION AND BRANCHING

"Branching" describes the process whereby an unexplored

subproblem is selected for exploration, i.e., upper and

lower bounds are ccmputed for the node and the node is

either fathomed or separated. "Separation" is the process

whereby the current subproblem is separated into two or more

21
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subsubproblems, at least one of which must contain the

optimal solution to the current subproblem if such a solu-

tion exists.

In a binary LP using depth-first search, branching and

separation are intertwined. A separation is always a

partition based on fixing a specific variable to 0 or to 1.

After a separation cne of the live nodes just created must

be immediately selected for branching. If a node is

fathomed, the most recently created live node must be

selected for exploration.

D. ALGOBITHM AND EXAMPLE

1. Aljorithm

The following branch and bound algorithm uses depth-

first exploration of the enumeration tree. The logic is

exactly that used in the programs written for this thesis.

Algorithm: Depth-First Branch and Bound

STEP 0. (Initialization)

Let BEST =CO, STACK =

STEP 1. Compute CUBND given restrictions defined by

S TA CK.
f CLBND ? BEST, go to step 5.

STEP 2. Compute CUBND given restrictions defined by

STAC K.

If CUBND < BEST, then let BEST = CUBND and save

incumbent.

If CLBND ? BEST, go to step 5.

STEP 3. (Branching) Select an unfixed variable j to fix

and determine whether to fix it to 0 or 1.

STEP 4. Put vertex j in SIACK with information indica-

ting whether it is fixed to 0 or 1 and that

its twin has not yet been explored.

Go to step 1.

22
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STEP 5. (Backtrack)

If STACK = +, then go to step 7.

STEP 6. Pemove j from top of STACK.

If its twin has been explored, go to ste F 5.

Otherwise, put j back on STACK fixing j to the

complement of its previous value and noting that

its twin has already been explored.

Go to step 1.

STEP 7. Terminaticn

If BEST =rX, there exists no feasible solution.

Otherwise, current incumbent is optimal.

End of Algorithm: Branch and Bound

2. Example

The example below illustrates the above algorithm on

the SCP defined in Table 1. Lower bounds on the solutions

at each node are obtained by finding a feasible solutico to

the dual of the LP relaxation of the SCP (See section P in

Chapter 4.). The upper bounds are obtained by using an
"addition heuristic" which successively adds columns to a

partial cover until a complete cover is obtained (See

section C in Chapter 3.). Separation is effected by

randomly selecting a variable x amonj all vdriables notJ
in the current soluticn obtained by the addition heuristic.

!he branch corresponding to x = 1 is explored first.J
The enumeration tree is shown in Figure 2. 1.

a. Initialize: BEST =00

b. Node 0: CLBND = 17.0

CLBND < BEST so continue.

CUBND = 18.0, X = ( 1,3,0,0,1,0,1

CUBND < BEST so let BEST = CU3 :D and X
-0

becomes the incumbent.
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CIBND < BEST so variable x is selected
2

for branching. Fix variable x to 1 first.2

c. Node 1: Given that x 1, CLBND = 25.3.
2

Since CLBND > BEST, backtrack to the twin

of this node which has not been explored.

d. Ncde 2: Given that x 0, CLBUD = 17-.9.
2

CLBND < BEST so continue.

CUBND = 18.0. No improvement over incumbent.

Since CLBND < BEST, select x for branching.5

Set x = 1.5

c. Ncde 3: Given that x = 0 and x = 1, CLBND = 18.0.

2 5

Since CLBND _ BEST, backtrack to the twin

of this node which has not been explored.

f. Node 4: Given that x 3 and x = 0, CLBND = 17.0.
2 5

Since CLBND < BEST, continue.

CUBND = 17.0 for X = ( 1,0,I,9,0,0,0 ).
-4

Since CUBND < PEST, let BEST CUBND ani
let X be the new inc'umbent.

Since CLBND > BEST, backtrack.

No live nodes exist, so the current incunhent

X is optimal with objective value 17.3.

-4
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(180, 8.0 (17.0, 1.0)

Note: Pairs are (CLEND, BEST)

25



III. HEUBISTIC SOLUTION TECHNIQUES .

A. IRTRCDUCTION

Two basic heuristic techniques exist for obtaining good S

feasible solutions to SCPs: "addition" heuristics and

"deletion" heuristics. These two heuristics are used in

this study for the purpose of generating solution sets and

upper hounds. These heuristics are not guaranteed to solve S

the SCP optimally but can be used to get good upper bounds

on the optimal solutions which are essential in the branch

and bound enumeration. Feasible solutions to the SCP are

easily obtained because of the SCP's greater than or equal

to constraints and nonnegative constraint matrix.

Computational results are given in section D.

B. ADDITION HEURISTIC

An addition heuristic begins with the infeasible solu-

tion x=O and successively sets to 1 that variable x which

myopically minimizes effective cost. The effective cost

associated with x is c./p., where p. is a penalty which in
J 3 J 1

some way reflects the amounts of infeasibility currently

being contributed by x = 0. The addition heuristic can be
J 0

stopFed when a feasible solution is obtained but it is

possible that the cover produced is not minimal and a seccnd

phase should be added which deletes any columns in the cover

which are redundant. p

26
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Algorithm: Addition Heuristic

Input: The SCP matrix and vectors A, c and b.

Cutput: Upper bound to SCP solution.

STIEP 0. "Initialization"

I (1,2,...,m) , J (12..,)

31 = b t = b, CUBND = 0.

For each column jeJ

Compute a penalty p >0.

Let h =number of nonzeros in column j.

STIEP 1. If b' < 0 or 3 is empty, go to step 3.

Otherwise, let

c

jo =ar2min
J P

31 = 1 + jo

CUBND =CUBND +c .

STIEP 2. For each i such that a.= 1

0j
Let bL = b'-1.

If b' 0 (update column sums)

Fcr each j such that a =a =1,
ii ijo

Let h =h -1.

If h =0,let J J-j.

If b' < 0 , go to ST2P 3.
1 9 Otherwise,

For each column jej
Update penalties p. if necessary.

Go to step 1.
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STEP 3. "Generating minimal cover"

For each each j f J'

If cclumn j is redundant

Let CUBND = CUBND - c.

let J' = J' - j.
STEP 4. "Termination"

Halt. If J' is a cover, CUBND is an upper hound

on the SCE.

Otherwise, no feasible solution exists.

End of Addition Heuristic

Two different penalty functions have been tested with

the above addition heuristic: p. = h and p. = k where kJ j J J j
is the initial column sum (number of nonzeros in the column'

which is never updated. Kovac [Ref. 4] suggests using kj
as part of a heuristic for obtaining both upper and lower

bounds on the optimal solution to an SCP. The results

obtainel using this Fenalty are not reported here, however,

since they are so poor. It should be noted that more

complicated penalty functions could certainly be defined

such as p = log(h.). In addition, instead of selecting the
3 3

minimum c./p. the minimum of a more general functional form
3 J

g(c,p.) could be selected.

3 3

C. DILETION HEURISTIC

*-. A deletion heuristic begins with the feasible solution

x=1 an] successively sets to 0 that variable x which

myopically minimizes effective Erofit c /p. Pere r. is some
28 J,

28
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jenalty reflecting the amount of overcovering which column j

is contributing. The deletion heuristic stops when no

alditional variables can be set to 0 without creating an

infeasiblility implying that the cover obtained is minimal.

The following algorithm carries out the above ideas.

Algorithm: Deletion Heuristic -

Input: The SCP matrix and vectors A, c and b.

Output: Upper bound to SCP.

STEP 0. "Initialization"

I = (1,2,...,m], J =

n
=1 t' = b, CUBND c

j=1
For each ifI,

let h = number of nonzeros in row i.
L i

For each jeJ,

let h = number of nonzeros in column j.

compute a penalty p > 0.

STEP 1. If b' < 0 or- J is empty, go to STEP 4.

c

Jo = argmax

STEP 2. For each i such that a = 1,

If b' = h., go to STEP 4.
i 1

STEP 3. J J - j

CUBND = CUBND - c

0

For each row j such that a = 1.
ii

let h = h - 1.
i i "

Go to STEP 1.
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.STEP 4. For each a..= 1 let J1 = J1 . j

0

For each ai 1 let b' b' 1
i i i

if b = 0, update column sum h lettingSi j

J = J - j for any h. = 0.
3

If b' < 0, go to STEP 6.

STEP 5. For each column jEJ.

Update penalties p. if necessary.

Go to STEP 1.

STEP 6. "Termination"

Halt. If J' is cover, CUBND is an upper bound

on the SCP.

ROtherwise, no feasible solution exists.

End of Algorithm Deletion Heuristic

The deletion heuristic has only been tested using p .=h
3 -

The comments on the Fossible use of more general functional

forms in the addition heuristic are also valid here, but

have not been tested.

D. CONPUTATIONAL RESULTS

An addition heuristic and a deletion heuristic have been

coded for purposes cf comparison. The results are summa-

rized in Table 3. As can be seen, the addition heuristic is

faster than deletion heuristic, but the upper bound from the

addition heuristic is not as good as that obtained b,, the

. deletion heuristic except for problems SteinerlA and Truck.

Although these results tend to indicate that the deletion

heuristic is better, the true test of usefulness in solving

SCPs will have to wait until chapter 5 where the heuristics

* . [are embedded in a branch and bound algorithm.
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TABLI 3 I

Computational Results of Upper Bounds i

Prcblem Addition Deletion I
Value Time Value Time I i

American 3.€32 0.35 3.364 35.13

Bus 5.253 0.03 5.192 0.64

Steineri 19.0 0.00 19.0 0.00I

Steinrla 9.0 0.00 10.0 0.00

Steiner2 32.0 0.00 30.0 0.01

Steinr2a 16.0 0.00 16.0 0.24
Tiger 59.264 0.11 59. 173 0.92

Truck 367.64 1.19 389.62 53.35

The above heuristic techniques are one-pass methods and

are the only methods implemented in this research.

Multiple-pass methods exist and are mentioned here for

completeness. The most straightforward multiple-pass method

is called the "l-opt" method [Ref. 51]. This method first

uses an addition or deletion heuristic to obtain a minimal

cover. Then, each column in the current solution is checkel

against the columns not in the solution to determine if a

one-for-one exchange can be made which maintains a feasible

cover while reducing total cost. The 1-opt method is an

example of an "exchange heuristic." The basic idea can be

extended to a k-way exchange resulting in the "k-opt"

method.
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IV. LOWER BOUNDS ON THE SCP

A. IITECDUCTION

Several methods of finding lower bounds for solutions to

the SCP are described in this chapter. Getting good lower

bounds on the optimal solution to an SCP is critical if

optimal solutions are to be obtained using branch and bound.

Lower bounds are also necessary if the accuracy of nonop-

timal solutions is tc be bounded when branch and tound fails

to find the optimal solution. There are many possible

methods of obtaining lower bounds on the SCP, all based on

solving some relaxation of the the associated ILP. Several

methods have been coded and are compared to decide which
method should be employed within the branch ard bound

enumeration. Although these bounds have not been used for

solving any SPPs, it should be noted that they are all valid

for the SPP since the SCP is a relaxation of the SPP.

A feasible solution to the dual of the LP relaxation of

the SCP provides one easily obtainable lower bound. Also, a

column partitioning method is given in which the SCP is

partitioned into small SCPs which can be solved exactly and

whose solution values may be summed to give a lower bound.

Another lower bound which is tested is the sum of all of the

minimal row covering fractions. All these methods are coded
and computational results compared in section E.

B. DUAL LP RELAXATICM LOWER BOUND

One cbvious relaxation of the SC? which can be solved to

obtain a lower bound is the linear programming (LP)

relaxatior. This technique has been used successfully in

many cases [Ref. 45]. But a problem with the LP lower bound
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.. ~ ~~~~ *.. .. . . . . . . . . . . .. . . .....

. .. . . .. . .. . . .. . . .. . .. . . .. . .... . ..



is that it may be difficult to solve the LPs associated with

many SCPs. (See for example Bausch [Ref. 2] and Salkin and

Koncal (Ref. 3]. ) This is true because the LP may be quite

large, highly degenerate and have a basis structure which is

numerically unstable. However, it is possible to get a

quick lower bound on the SCP by just finding a feasible

soluticn to the dual of the LP relaxation of the SCP since,

w (1P) < w*(LP ) = v*(LP ) _< v* (SC2)
D D P

where w(LPD) = objective value for a feasible solution

tc the dual of the LP relaxation,

w*(LPD) optimal value of the dual LP relaxation,
D

v*(LP ) = optimal value of primal LP relaxaticn,
P

and

v*(SCP) = optimal value of the SCP.

letting 1 denote a rcw vector of ones, the dual tc the LP

relaxation of the SCE is

max b u - 1v

s.t. A u - Iv 5 C

u > 0, v > 0.

The dual LP looks very similar to the SCP itself if the dual

variables v are set to zero, and a simple method for

obtaining a feasible solution can be devised in a way that

is similar to the greedy addition heuristic for the SCP.

Algorithm: Dual LP Relaxation Lower Bound (DLPRLB)

Input: SCP coefficient matrix and vectors A, c and t.

Cutput: Lower bound CLBND to the SCP

STEP 0. "Initialization"t

CLBND = 0
I = f1,2,..,m) , J = 1, ,n--':

For each iEI, let h = number of nonzeros
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in row i.

SIEP 1. If I is empty, go to STEP 5. Else, let
b

i0 = argmax

I = I-i

0

STEP 2. c = in c
J J:ai j
0 ii

0

J = J- j0

STEP 3. CLBND = CIBND + c b

0

STEP 4. For each row i such that a = ,
ij0

For each column j such that a = 1,

Update cost coefficients

C =c -c
0-

Fepeat STEP 1.

STEP 5. "Termination"

Halt. CIBND is a lower bound on the SCP.

End of Algorithm DLPEIB
At each iteration of the algorithm, dual variable u

would be set to cj. The actual values of the dual

variables need not be retained, however, since the value of

the dual objective function is just bTa.

Hey [Ref. 45] gives a somewhat more complicated metho.
. for finding a feasible soluticn to the dual relaxation of

the SCP and this is tested along with the method described

above.
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C. PAETITIONING LOW!E BOUND

Marsten [Ref. 50] gives a method for finding a lower

bound on the SCP by solving subproblems of the SCP defined

on certain partitions of the coefficient matrix. it is

easier tc describe tne method, however, in terms of a maxim-

izaticn problem.

Erown, McBride and Wood [Ref. 46] give a way to calcu-

late an upper bound using a partition of the columns for a

problem of the form:

MAX cx

S.T. Ax _< b

x binary.

They use the bound fcr estimating the size of the maximum

embedded generalized network in an LP constraint matrix

where c = 1, b = 2, and A is the transpose of the 0-1 inci-

dence matrix associated with an LP constraint matrix. Their

bound is found as follows.

let A and A be a partition of the columns of A and let z,
1 2

z and z be the sclution of the maximization problem on
1 2

A, A and A respectively. Then, z _ z + z
1 2 1 2

If A is intelligently chosen, z can be computed exactly.

Then, A becomes A and the partitioning scheme is recur-
2

sively repeated until z can be easily solved also.
2

The SCP can be ccnverted to a maximization problEr by

substituting variables 1-y for x and multiplying the objec-

tive function by -1. Thus, it is not hard to see that a

lower bound on the SCP can be obtained using the above

method. Of course, the method can be applied directly

without making the substitution. The partition of the

columns

A is created with respect to an arbitrary row i. The
1
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columns of A are those columns of row i ccntaining

nonzeros. The minimum cost among those cost coefficients

contributes an additive term to the lower bound. The vari-

ables included in the partition are never considered again

and all rows with nonzero intersections in the partition are

also never considered again.

Algorithm: Partitioning Lower Bound

Input: SCP coefficient matrix and vectors A, c and h.

Cutput: Lower bound CLBND to the SCP

STEP 0. "Initialization"

I = (1,2,...,m), J = (1,2,...,n)

For each iEI,

let h= number cf nonzeros in row i1

STEP 1. If I is eapty, go to step 4.

Let i= argmin h
0 1 i

STEP 2. (Find the b minimum c in row i .)
i 0
0

Let j argmin c
0 j:a. =1 j

0
Let CLBND = CLBND + c

Let c = 0oJo

Let b = - 1.i i
0 0

If b > 0, go to step 2.1
0

STEP 3. For each j' such that a = 1,

0

For each i such that a = 1
i'

36
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Let b b -1

If b.= 0, let I =I -i.

Go to step 1.

STEP 4. "Termination"i alt. CIflND is a lower bound to the SCP.
End of Algorithm Partitioning Lower Bound

D. KOVAC'S LOWER BOUND

MConsider the basic model of the SC? with all right-hand-

side values equal to 1.

n

() ! 1N c x

S j=1
n

S.T a. x.? 1 i= ,.m

j=1 '

x binary j =1..,n

The following lemma (Ref. 44) provides a lower bcund 'For

the above SCP.

ilemma Denote the optimum of problem (8) by Z

then

(9) Z 2: ~f*

where f is the minimal covering fraction of row i:
i

0

(Po f MIN (rI 0 j :5 n, a. 11
1 D (roof)Define the fcllowing new problem.
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n m

(10) I r yjk
j=1 k=1

n M

S._- E gijk y

j=1 k=l

y binary j = 1,...,n, k = 1,...,m
jk

wheregijk = ja i j  if j = k

0 otherwise.

To any feasible sclution x of the SCP, there corresponds

a solution of problem (10) in such a way that the objective

function values are egual. Specifically, for each x =I,
J

y = 1 for all k. On the other hand the minimum of prcblem

(10) is obviously F. This proves the statement (9) of the

lemma.

It is easy to extend the Kovac bound to problems with

general right-hand-sides by using

m

F = bf.i i
i=1 -

E. CGMPUTATIONAL RESULTS

Computational results for the lower bounds described

above are reported here for all the test problems (See latle

4. "tDNR"indicates did not run.). It is not clear that the

tightest lower bound for the complete problem will perform

the best in the branch and bound enumeration, but some posi-

tive correlation is to be expected. The computational speed

of the bound is also a consideration in branch and toinl and

some increase in speed may be traded for a loss in accuracy.

Thus, the results given here are a guide to which bound will

38
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he most effective in the branch and bound algorithai but only

testing with that algorithm can determine true effective-

ness. The dual LP relaxation method (DLPFLB) appears to be

the best in the problems Bus, Steinerl, Tiger and American.

Actually, both DLPRLB and Hey's method do outstandingly well

on Bus. Kovac's heuristic appears to be superior to the

cther bounds in Truck, Steinrla, Steiner2 and Steinr2a. For

Steinrla and Steinr2a, the bounds are tight indicating that

if good heuristic solutions can be obtained, the branch ani

bound algorithm should terminate very quickly.

39
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V. COMPUTATICRAL EXPERIENCE AND DIFFICULTIES

A. RESUITS

All of the coEFutational results reported in this

secticn are for SCPs. The algorithms performed very. well or

some of the problems hut not on the others. At first, small

test problers were used to check t!ie correctness of the

algorithms. All algorithms worked well on these small proh-

lems. The algorithms were then tested on the eight FrcLlEms

described in chapter 1. To solve these problems, we have

used five methods to see which method is more effective than

the others. The descriptions of the methods follow.

Method 1: Lower bcund: Dual LP relaxation.

Upper bound: Addition heuristic.

Separation: j0= argmin c /h among allo iiJ

X = 1 in current solution.
j . .

Branching: x = 1 first.

Method 2: Lower bcund: Dual LP relaxation.

Upper hound: Addition heuristic.

Separation: j0 = argmax c /h among all
ii

j not in current solution.

Branching: x = 0 first.j
Method 3: Lower bcund: Dual LP relaxation.

Upper bcund: Deletion heuristic.

Separation: argmin c./h among all variables
J j

j not in current solution.

Branching: x = 1 first.

j4
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Method 4: Lower hound: Dual LP relaxation.

Upper lound: Deletion heuristic. ---

Separation: argmax c./h. among all variablesJ J

j not in current solution.

Branching: x. = 0 first.

Methcd 5: Lower bound: Kovac's

Upper hound: Addition heuristic.

Separation: argmin c./h. among all variables
3 J

j not in current solution.

Branching: x = 1 first.J

As illustrated in Table 5, three problems were not

solved optimally. We denote the actual percentage with

respect to the optimal value as a "%OPT" and the provably

optimal percentage as " .POPT." %POPT denotes the aiount by
which were able to prcve that the best solution found varied

from the optimal solution without knowing the optimal solu-

tion. This value is obtained by changing the CLBND > FEST

tests in the branch and bound algorithm to

CLBND _ BEST-EPS where EPS is an allowable amount of error.

If the branch and bound algorithm then halts, it fcllows

that the incumbent solution is within 1005,.(BEST+EPS)/P. ST

of the optimal soluticn.
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All these problems except Truck are typical set covering

problems which have right-hand-side values equal to 1. The

Truck Frohlem has the general right-hand-side form shown in

Equation (2). The ccmputational results are summarized in

Table 5. These results are the best of the various solution

methods tried. "Previous Results" indicate either those

times reported by Bausch or the times we recorded using the

methods of Bausch. Bunning times on Steiner2 are for 10000

nodes only; optimality was not proven in either our or

Bausch's computation. Table 6 shows the comparison between

the different soluticn techniques on each of the problems.

The problems marked with * were not solved optimally within

I minute of CPU time.
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B. EXAMPLE

One cf the results of the tests was that the deletion

heuristic usually produces better feasible solutions thar

the addition heuristic both initially and further 4own the

tree. This leads to the enumeration of fewer nodes with the

deletion heuristic. Unfortunately, it does not leai to

faster times because the deletion heuristic is so much

slower than the addition heuristic. For example, using

method 4 which includes the deletion heuristic, it is

possible to solve Bus after exploring only 15 nodes. Using

method 1 with the addition heuristic requires develoirg 53

nodes to solve Bus. Cn the other hand, the method usinj the

deletion heuristic requires 4.24 seconds to solve the

problem while the method using the addition heuristic

requires only 0.82 seconds to solve the problem.

In order to illustrate the actual behavior of the algo-

rithm, the enumeration for Bus is shown below for tuo

different methods, method 2 and method 4. For these two

methods, the enumeration trees are sufficiently small to be

shown. The entire trees generated for Bus are displayed ir

Figure 5.1 and Figure 5.2. Note that for both methcds, the

optimal solution is found at the second node of the

enumeration tree. Most of the running time of the aljorithm

is spent proving optimality after the optimal solution is

found.

46

-.- -I

• ...... .".... .... . .'.. -..: " .- . ..- ....• . . ..... v . Z. , . . ... ..-. .-- ......... '.'.:.u 'v .' : ." ',.-<: .' ,



I If
-uH

(iI

4

1--J

I ~1 OL i C
oo 01

- - -

Q
Il In

06z;

I7i

I 07



p0

x =1x =0
478 .478

10 1

x =1 x =0 x =1 x .0
155 155 244 244

x 1 x 0,x =J/ "' x =0

x 

V7 

=

60 
60

x c =1 , x =01

134 134

70 6DI

Figure 5.2 Method £4 on Bus.
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VI. CONCLUSIONS AND RECOIMENDATIONS

The branch and bound enumeration method using heuristi-

cally obtained upper and lower bounds works well cn some

problems and poorly cn others. Solution times are better

than the times using the methods described by Bauscb on

certain problems but other problems could not be solved to

optimality in a reasonable amount of time. The algorithm is

largely dependent upon the quality of bounds obtained, and

in certain instances these bounds are not very good.

The gree4y addition heuristic used here does not perform

as well as might be hcped and the deletion heuristic, which

performs better, is too slow to use in most cases. Other

addition heuristics should probably be tested which select

that column j minimizing some function

g(c,h), where g(c, h.) is some function other than c /h
J I 5 j J -i

such as c./log(h.). In fact, Vasko and Williams [ef. 51]
3 3

have had some success selecting randomly from a number of

such functions, albeit on randomly generated problems. They

also utilize a 1-opt heuristic. Future research should

examine the use of this and other exchange heuristics,

particularly in conjunction with the addition heuristic

since it may be possible to significantly improve upon the

solutions obtained without sacrificing tauch computational

speed.

The lower bound from the dual LP works quite well on

some problems and poorly on others, notably Truck. Of

course, the LP-based bound did not work well on Steinerl or

Steiner2 since those problems were concocted so as to have

very poor LF relaxations. The high speed of zomputation for

49
~4 9-

- -.~ . . . .. . . . . .



this lower tound does allow rapid investigation of a large

number of nodes, however. In the Steiner problems, we

expectel that branch an! bound enumeration using Novac's

l~ower bound might work better than the other lower bounds

since the value of the initial lower bounds were stronger

than the other bounds as shown in Table 4$. Unfortunately,

the (duality of the bound does not improve rapidly enough as

the enumeration proceeds. Additional research is needed to

generate better heuristic solution sets and lower bounds.
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71 APPENDIX A

DATA FORMAT FOR TRUCK ROUTING EXAMPLE

8 7 23
0 .10000000D+01 0.10000000D+21

20.10000000D+01 0.10000000D+21
3 0.10000000D+01 0.10000000D+21
4 0.1000000D+01 0.10000000D+21
5 0.10000000D+01 0.10000000D+21
6 0 .100100 0 0D + 01 0.10000000D+21
7 0.10000000D+01 0.10000000D+21
8 0.10000000D+Cl ).10000000D+21
1 7.000 4 1 2 3 4
2 8.000) 3 3 4 6
3 10.000 5 1 5 6 7 8
4 12.000 5 1 2 3 7 a
5 6.000 3 5 6 7
6 5.000 2 4 5
7 5.000 1 8
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